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at 295°K by Reid & Smith (1970), [B(sodium)= 
0.8685; B(fluorine)=0.8671 A2], using force constants 
derived by fitting a shell model to measured dispersion 
curves. This shows that the treatment of the extinc- 
tion-affected reflexions in the least-squares refinement 
was entirely satisfactory. 

The author's thanks are due te the X-ray diffraction 
group of the University of St. Andrews, Scotland, for 
the use of a Siemens four-circle diffractometer. His 
thanks are also due to the referee for his constructive 
criticism. 
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A method for the numerical evaluation of N-beam diffraction amplitudes and intensities which has been 
successfully employed over the last few years is described. This derives from the multi-slice formulation 
of Cowley and Moodie. The physical basis of the method and practical approaches to calculation are 
described. 

1. Introduction 

The present paper is intended to serve both as a prac- 
tical guide to calculation of electron-diffraction inten- 
sities, and to give a summarized account of the physical 
basis of the multi-slice method. For the first purpose 
§§ 1 and 3 to 5 may be read alone. 

The feasibility of numerical evaluation of diffrac- 
tion intensities from the N-beam solution for a paral- 
lel-sided crystal was demonstrated by Sturkey (1962) 
using a scattering matrix, and by Wagenfeld (1958) 
and Howie & Whelan (1961), using Bethe's eigenvalue 
method (Bethe, 1928). 

An analytical sglution was obtained by Cowley & 
Moodie (1957) by applying the slice method to elec- 
tron diffraction. The solution itself is not suited to 
direct numerical evaluation, but a numerical method 
based on the finite-slice approximation (Moodie, 1965) 
called here the multi-slice method, was tested by Good- 
man & Lehmpfuhl (1967) and has been since greatly 
expanded and applied to a large range of problems, 
including the study of large and complicated unit cells 
by Lynch & O'Keefe (1972). 

Most, if not all, published calculations made for 
comparison with experimental work have used either 
this method, or Bethe's eigenvalue method (recent ex- 

amples of the latter: Lehmpfuhl, 1972; Ayroles & 
Mazel, 1970; Lally, Humphreys, Metherell & Fisher, 
1972). Sturkey's method has been used recently to a 
limited extent (e.g. Melvin, Morris & Bottoms, 1971). 
It will be shown in § 5 of this paper that economical 
numerical evaluation by means of the scattering ma- 
trix is identical to the multi-slice calculation. Here the 
term 'scattering matrix' is used to denote Sturkey's 
formulation, and not a theoretically trivial though 
convenient rewriting of the eigenvalue method in 
matrix notation. Leaving aside for the moment the 
question of computation times, the eigenvalue method 
appears to be useful for calculations involving a lim- 
ited number of beams and for some special eases in- 
volving symmetry reduction (e.g. Blume, 1966). How- 
ever, this utility is not maintained for large numbers 
of beams; the size of the computer memory required 
increases as N 2, and, more seriously, the probability 
of near coincidence of eigenvalues is increased. As 
against this, the multi-slice method has proved useful 
for calculation with several hundred beams, the mem- 
ory requirement expanding roughly as N. This, and 
the fact that absorption, faulting and other three-di- 
mensional effects are easily introduced, and that the 
calculation is not self-normalizing, have combined 
to make it a useful crystallographic technique. 
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In the multi-slice method normalization results only 
if sufficient terms are retained in the calculation, i.e. 
the normalization test is also a test that sufficient 
N-beam interactions have been included, within the 
framework of the physically defined problem. Essen- 
tially this arises because the phase-grating approxima- 
tion gives us a very accurate calculation for a very 
thin crystal, and the unitarity test (defined in § 4) will 
detect whether the following part of the calculation 
retains sufficient (but not necessarily all) of the terms 
from this stage to give a good description of the dyna- 
mic interactions. Problems may be looked at in three 
categories. These are as follows: (a) Systematic inter- 
actions: this calculation will normalize with inclusion 
of only the systematic interactions provided the cal- 
culation has been made for a one-dimensional pro- 
jected potential, i.e. an artificially averaged structure. 
(b) Two-dimensional interactions: in calculations made 
from a two-dimensional projected structure sufficient 
of the two-dimensional array of resulting beams must 
be retained in the subsequent multi-slice calculation 
to obtain normalization. (c) Three-dimensional inter- 
actions: these are automatically included in the multi- 
slice calculation, and for this reason their correctness 
is not checked by normalization, i.e. their inclusion 
requires no additional terms in the two-dimensional 
phase-grating (see later discussion). 

Since categories (b) and (e) include all calculations 
of real accuracy, and (a) is simply a useful approxima- 
tion, we have an objective means of determining the 
number of terms required in the dynamic calculation, 
not available in the eigenvalue method, nor in Stur- 
key's method by the procedure normally advocated. 

Thus, independently of whether the initial Fourier 
summation contains sufficient terms to give an ade- 
quate description of the crystal potential (a point 
which may be readily checked), the subsequent nor- 
malization tests whether sufficient beams have been in- 
eluded in the dynamic calculation. This arises because 
the phase-grating calculation will generate all higher- 
order beams even when those terms have been omi t ted  
in the initial k#~ematie Fourier series. 

Apart from the relative merits of the multi-slice 
method and the eigenvalue method in obtaining the 
final results, the two methods have different starting 
points and therefore give different insights into the dif- 
fraction problem. The multi-slice method starts with 
the complete N-beam expression for a very thin crystal, 
i.e. the thin phase-grating expression. This is also a 
simple analytical expression. Therefore we are provided 
at the outset with the thin crystal pattern, which is 
particularly useful in structure analysis, and for sep- 
arating the influence of elastic scattering and absorp- 
tion. The eigenvalue method on the other hand starts 
with a thickness-independent result, viz. eigenvalues, 
which is useful in the analysis of scattering from thick 
perfect crystals. The concept of 'Bloch wave scatter- 
ing' derived from this method has been extensively 
adopted in studies of absorption; however this con- 

cept derives strictly from an N-beam solution obtained 
before boundary conditions have been applied. The 
starting point for study of absorption in the multi- 
slice method is N-beam diffraction from a thin am- 
plitude grating, which has analytical applications 
particularly (though not exclusively) suited to thin 
crystal studies (e.g. Cowley & Pogany, 1968, and this 
paper). 

Error is introduced in the multi-slice method by hav- 
ing to take finite slices, but this error can be reduced 
to any arbitrary size by reducing the slice thickness, 
at the cost of computer time. For example, when the 
slice thickness is 5 A an accuracy of 1% can be main- 
tained in the main beams up to a thickness of 1000 A, 
in a light-atom structure (MgO), and for heavy atoms 
the same accuracy can be maintained to 500 A with 
about half this slice thickness (Lynch, 1971). The error 
introduced by taking A z  (slice thickness) finite is ana- 
lysed below. 

The question of the number of beams in a calcula- 
tion is not a trivial one. In dealing with large and com- 
plicated unit cells it has proved necessary to deal with 
the order of 500 beams to obtain either a qualitative 
or a quantitative description, while in dealing with 
small unit cells when accuracy is important, 100 or so 
beams are needed, at least initially. This is necessary 
to make sure that the estimation of structure factors is 
correct. Inadequate calculation results in values being 
attributed to structure factors which actually include 
pseudo-potentials deriving from weak-beam interac- 
tions (Goodman, 1974). 

Computation times for 435 non-equivalent beams 
have been investigated by Lynch & O'Keefe (1972, 
and private communication) for different CDC com- 
puters. These times are, 15 s per slice for the 3600, 
3.5 s per slice for the 6600, and an estimate of less 
than 0.5 s per slice for the 7600. These times show the 
big improvement in time with the new computers. 
Times for a different number of non-equivalent beams 
can be estimated from the proportionality to N 2. On 
the other hand multi-slice calculations for 225 beams 
have been carried out in our laboratory on a small 
desk computer (HP2114, with 8 K memory) (Lynch, 
private communication). This is possible because multi- 
slicing involves only repetitive multiplications, and re- 
quires only a small memory. 

2. Physical basis of the multi-slice method 

The multi-slice formulation was originally used as a 
means of obtaining an analytical solution, by taking 
an impulse limit Az  --> 0, n --> ~:~, and nAz  --~ H (Cow- 
ley & Moodie, 1957). In order to obtain a formulation 
suitable for numerical work an earlier stage in the 
derivation must be used, i.e. an approximation with 
finite Az. 

The material is treated as a series of scattering planes, 
on to which the potential from the slice between z and 
z + A z  is projected, separated by vacuum gaps Az,  not 
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necessarily corresponding to any planes or spacings of 
the material structure. 

The phase change in the electron beam produced by 
passage through a slice is given by 

exp{ia !i '+4z / ~o(x, y,z)dz~ =exp { ia~o(x, y)Az} , 

where, 

~o(x,y,z)= ~ ~. ~ V(h,k,l) 
h k ! 

 exp 

is the potential distribution within the slice, expressed 
in V and ~o(x,y) is the mean value of the potential in 
V in the region zl--+ zl +Az. Projected potential may 
also be defined as the result of the above integration 
over z, but the unit of projected potential, P~0, will then 
be V •,* viz: 

(.zl+Az 
P~p(x,y) = ~ ~p(x,y,z)dz=~p(x,y)Az. 

The projected potential is a useful quantity to plot in 
a calculation, as an indication of the amount of ma- 
terial in a slice. 

For the nth slice, the phase change is written 

exp {ia~o.(x,y)Az}=exp {ia~'(o.(x,y)}. 

a has the dimensions of (V A)-1, 

2 l y -  
W2 " 1 +(1 " 1 - ~ 2 )  1/2 " 

W is the accelerating voltage and fl= vie. This expres- 
sion, together with the use of the relativistic wavelength 
for 2 incorporates all the relativistic corrections that 
are necessary. 

The phase distribution in the xy plane resulting from 
propagation between slices is given by, 

ik(x 2 + yZ) [ 2rc 
exp[-  2AT ] ,  where k -  2 ' 

and using the approximation, very good for the range 
of angles being considered, of a parabolic wave front 
(Cowley & Moodie, 1957). All errors resulting for the 
parabolic approximation go to zero for Az--+ O. Thus 
the wave function for the nth slice is 

r ik(x 2 + yZ) /1 t n*exp  exp (1) 

z is chosen normal to the bounding surface a n d .  is 
the convolution symbol, defined by 

* The whole problem of redefining units in electron diffrac- 
tion is discussed elsewheie (Dawson, Goodman, Johnson, 
Lynch & Moodie, 1974). 

For an ordered crystal structure, u,.(h, k), the Fourier 
transform of ~u., is a set of delta functions, which makes 
computation relatively simple. Fourier transformation 
of equation (1) gives a recurrence relation in the mo- 
mentum space of the (x,y) coordinates, and the direct 
space of the z coordinates, 

u.+l =u .  exp {i27rAz((h,k)}. q,.+l 
= u,. exp [ - i2~za(h, k ) ] .  qn + 1 

=Un exp [ - i2nAz 22 { h(h-h")a 2 

+ ~ . q. + ~ = u,,p,,, q,, + 1, (2) 

where for simplicity the equations have been given 
for orthogonal axes, and h",k" are the (non-integral) 
intercepts of the Laue circle on the axes, in units of 
(I/a), (I/b). q,.+l is the Fourier transform of exp 
{iarp,.+ 1}; and 

.[-i2zrAz 22_[ a2 " -- + ~ h ( h - h ' ' )  k(k-k")b_2 }]- p,,=exp 

is the Fourier transform of the propagation function. 
The excitation errors are defined by, 

~h(h..--.h_'.') k(k~2kt')} ((h,k)= - 2 / 2 [ -  aZ + 

and the phase change in terms of 2~ between slices 
of the h,k beam, a useful quantity, is given by 

_lh(h a 2- h") + k(k b z- k")~j ~(h,k) -= Az2/2 

= -( (h ,k)Az.  

The sign of ((h,k), the z component of the excitation 
error for the reflexion (h,k), is fixed by the equation 
as negative for incident directions (h", k") correspond- 
ing to (h,k) outside the Ewald sphere. 

Iteration of the equation generates the scattering 
amplitude as a function of thickness. 

Separation of the phase change due to material scat- 
tering from that due to vacuum propagation in the 
slice formulation can be justified by deriving the dif- 
ferential equation corresponding to the difference equa- 
tion (I). In § 7, an argument of Feynman is used to 
show that equation (1) is a finite difference form of 
Schr/Sdinger's equation, back-scattering being ne- 
glected. The neglect of back-scattering can be justified 
(Lynch & Moodie, 1972). Equation (2) therefore rep- 
resents an iterative procedure for the solution of 
SchrOdinger's equation appropriate to the scattering 
of fast electrons by a plate. 

3. Procedure 

The numerical procedure involves calculation of the 
transmission through a thin slice (the 'thin phase grat- 
ing' calculation), calculation of the vacuum propaga- 
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tion through Az, followed finally by evaluation in the 
computer of the iterated form of equation (2), 

• .. P4{P3[P2(Plq:t * q2) * q3] * q4} * . . . .  (3) 

as given by Cowley & Moodie (1957); by repeated con- 
volutions and multiplications, up to a given thickness. 
This calculation must be repeated for each angle of 
incidence required. Since this final evaluation is a very 
straight-forward procedure in a digital computer, the 
main task in starting a calculation is usually the com- 
putation of the phase-grating function, q. 

Direct evaluation of the phase-grating series in re- 
ciprocal space, 

(iaAz) 2 
q(h,k)=fi(h,k)+(iaAz)V(h,k)+ 2! 

× ~ V(hlkl)V(h-h~,k-k~)+ . . .  , 
hlkl 

where Az is the actual slice thickness, as given by Cow- 
ley & Moodie (1959), is too slow in practice. This dif- 
ficulty is bypassed in the following procedures. 

(a) Evaluation from the projected potential (real space) 
The phase-grating function may be obtained by 

Fourier transformation of the expression exp [ia. 
~o(x,y). Az], where ~o(x,y) is the mean potential of the 
slice. The cosine and sine of ~'~o(x,y) are required, and 
normal crystallographic structure-factor programs 
which make use of symmetry reductions may be used 
on both these functions of the potential for this evalua- 
tion. In this way symmetry reduction is introduced not 
only into the kinematic but also into the dynamic part 
of the calculation to this stage. One advantage of the 
real-space calculation is that the projected potential of 
each slice may be inspected in the course of the calcula- 
tion. This is valuable in checking for errors, and in 
relating the final diffraction pattern to structural sym- 
metries. 

When absorption is involved, P~o(x,y) becomes com- 
plex, and then both the phase and the amplitude peri- 
odic distributions must be calculated and may be in- 
spected separately. 

(b) Evaluation completely in reciprocal space 
A terminated phase-grating series, for example 

q(h,k)=c~(h,k) + iaV(h,k)A'z , (4) 

may be used to obtain the q function for equation (3), 
provided A'z is made so small that error due to ne- 
glect of later terms is negligible. A'z is then too small 
for use directly in equation (3), but a practical method 
of computation can be developed from an alternative 
definition of the exponential 

( lim 1+ = e x p ( x ) .  (5) 
n - - - - ~ o o  

With x=ia~o(x,y)Az, and ~ the Fourier transform 
operator, the phase-grating series can be written 

[ fi(h,k) + ia Az o~. (x,y ) ] 
n 

* [~(h,k)+ia Az ~'q~(x,y) ] . . . . .  . . ,  

n 

= A . A . A . . . . ,  

which, because of the associative nature of convolu- 
tion, can be written 

. . .  {[(A. A ) .  ( A .  A)] .  [ (A.  A ) .  ( ~ .  A)]}.  . . . .  

a form suitable for numerical evaluation. Thus, if 
equation (5) is approximated for some finite n, so that 
A'z=Az/n, the convolutions can be arranged to give 
a geometric progression in thickness. 

An estimate for n is obtained by comparing the bi- 
nomial and the Taylor expansion. These differ in the 
third terms, which are x2/2!- 1In. x22!, and X2/2! re- 
spectively. For accuracies meaningful under current 
experimental conditions, therefore, n~103. Lynch 
(1974) shows that this figure leads to acceptable com- 
puting times and gives details of computations. 

Alternatively, it is of interest to note that if we 
multi-slice with (4) in single-slice progression, progres- 
sive convolutions generate what are approximately 
equivalent to successive terms in the Born Series, so 
that for a particular problem the numerical contribu- 
tion to an intensity of each order process may be 
estimated. 

In calculation by the multi-slice method no addi- 
tional steps are required for a non-centrosymmetric 
projection. In calculations with absorption it is neces- 
sary to make two calculations of projected slice poten- 
tial, that is for the phase object and for the amplitude- 
scattering object. The phase-grating function is then 
obtained by Fourier transformation of {exp [iaq~(x,y). 
Az] exp [-a~0(x,y). Az]} with aq~(x,y) representing the 
absorbing potential, i.e. 

a~0(x,y)=~ ~ V~kexp [-2zci ( l~x+  k_y_)] . 

From then on the procedure is unchanged. This method 
gives us a physical picture allowing us to predict the 
likely effects of the introduction of phenomenological 
absorption. In other words, we are introducing a pe- 
riodic amplitude object, which itself introduces further 
dynamic effects. Using procedure (b), absorption is 
introduced simply by taking complex structure factors. 

4. Testing for errors 

Calculation for the two-dimensional diffraction pat- 
tern represents the general problem, and is one for 
which true tests of normalization of intensity may be 
applied. Reduction to the one-dimensional or system- 
atics case is always obvious and often useful provided 
it is realized that tests of consistency and normaliza- 
tion then only apply within the terms of reference of 
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the problem, i.e. a structure composed of uniform 
planes of potential. Also no internal clue is obtained 
as to the validity of this approximation. 

Limitations of accuracy in the calculation are likely 
to come from the choice of Az, and of diffraction aper- 
ture (number of beams), and these choices are related. 

If Az is too large there are two possible errors for a 
certain diffraction aperture: exp [ia~o(x,y)Az] becomes 
too rapidly oscillating for the sampling interval in the 
inverse Fourier summation, and/or 'false' upper-layer 
reflexions are generated corresponding to a unit cell 
with a c=Az. On the first point, rather than taking 
very fine sampling intervals in the xy plane, it is more 
convenient to subdivide Az until ~'~0 is sufficiently small. 
A phase-grating function is computed for A'z = 1/nAz, 
from which an accurate phase grating for Az may be 
obtained by repeated convolution without propaga- 
tion, i.e. application of equation (3) with p = 1. This is 
useful, for example, with heavy atoms and/or large dif- 
fraction angles, or simply for obtaining a rapid multi- 
slice procedure by starting with a thick phase grating, 
to obtain approximate diffraction intensities for special 
purposes. 

On the second point, if Az is made sufficiently small 
(and hence slices sufficiently close) the weight of the 
false upper-layer interactions will tend to zero, while 
those neighbouring the real upper layers will approach 
the correct three-dimensional result. However, this is a 
very inefficient approach because the rest of the cal- 
culation becomes over-accurate. It is usually an ac- 
ceptable approximation to take slices through sec- 
tions of high atomic density, and to propagate through 
sections of minimum density. This is particularly so 
for a layer structure with all atoms confined closely 
to planes perpendicular to the projection. 

If for example we take the functions qt, qz, qa and 
Azl, Azz, Az3, corresponding to interlayer spacings with- 
in the unit cell (Azz + Azz +Az3 = c), we at least ensure 
that the upper-layer reflexions have the correct recip- 
rocal-lattice coordinates, even though they may be of 
incorrect weight. Furthermore, the error in weight of 
upper-layer interactions introduced by this method is 
likely to be very small, and smaller than other errors 
of calculation. There are two situations where this is 
obviously useful. One is in calculations for a layer 
structure with a long c axis parallel to the incident 
beam (see Fig. 1), and the other is with a short c axis 
but with the incident beam at some large angle to the 
zone axis. In the latter case upper-layer interactions 
become 'accidental' interactions and their influence is 
automatically included. 

If the diffraction aperture chosen is too small, the 
calculation will lose energy. 

Two tests which must therefore be carried out are 
as follows: 

(1) A unitarity test on the phase-grating function, 
before it is multi-sliced, i.e. 

~ q(h',k'),  q(h+h' ,k  + k ' ) = f i ( h - h ' , k - k ' ) ,  
h" k '  

a summation carried out over the N beams (all h,k). 
This test includes the test of normalization to unity of 
the total transmitted intensity. Then, after multi-slic- 
ing, the total intensity ~ I  should be compared to unity. 
For this test a calculation must be made without in- 
troducing phenomenological absorption, even if this 
is to be required finally. Such calculations, to lead to 
good accuracy, should retain at the last slice preferably 
90 % or so of the original intensity. 

(2) A map of propagation phases, 

c~(h, k) = Az 2 [ a 2 + 

(given here for simplicity for orthogonal axes), where 
h,k are the indices of a reflexion and h", k" continuous 
direction indices for the incident beam, must be plotted 
for each orientation so that reflexions from other than 
the first Laue zone (c~h < 1) will be detected. The prop- 
agation function, exp (-i2razh), is the function P used 
to evaluate equation (3). 

For a practical calculation the number of beams to 
be included can be chosen initially on the basis of re- 

1 I 

J 

/ 
I0 ~][ 

zc i 
J 

/ ! ,o / 

0 I0 20 50 
+ ~ + .~ + • + 

Fig. 1. Intensities of reflexions from MoOa computed as a 
function of thickness for a crystal whose surface is formed 
by a double octahedral layer, for the [010] zone axis orienta- 
tion. The broken curve shows the 200 intensity on a scale 
reduced by 10 relative to the top curves. It is also shown as 
a full curve reduced 50 times. The other curves are for the 
100 reflexion, oscillating with a ½ unit-cell period, and for 
001 reflexions, oscillating with a 1 unit-cell period. Crosses 
and asterisks, correspond to crystal thicknesses commonly 
observed, which have an integral number of whole and half 
unit cells respectively. 
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flexions yisible in the diffraction pattern, with the 
proviso that it is wise not to have a strong reflexion 
near the edge of the aperture. The normalization test 
will show if the aperture has been adequate. Az may 
be chosen, without detailed examination of the poten- 
tial, by trying successively smaller values until the final 
result is not appreciably affected. 

If Az is deliberately made large, e.g. to obtain a rapid 
calculation, the errors will make themselves felt at first 
at larger scattering angles. With simple structures, hav- 
ing something like a monotonic fall-off in diffraction 
intensities with angle, these calculations can be useful 
in obtaining an approximate answer to the main beam 
intensities in the symmetrical orientation (Johnson, 
1968) while giving a poor result for weak high-order 
reflexions. In these problems one is able to make an 
optimum choice of Az based on the information re- 
quired. 

In our experience no atom has been found so heavy 
as to require sectioning for fast electron diffraction 
from solids (e.g. gold, see Lynch, 1971). Therefore in 
calculation of ~o(x,y) the simpler summation (Y ~ V~k) 

h k 

may always be used for the atoms in each layer, rather 
than the more complicated summation, (~ ~ ~Vhkz). 

h k l  
This will not necessarily be true for gas diffraction 
or lower-energy diffraction. 

5. Summary of procedure 

A practical sequence of operations is now given. 

(1) Projected potential 
Assemble kinematic structure factors relevant to the 

projection, and calculate the projected potentials by 
Fourier summation. If the calculation is to include 
phenomenalogical absorption, a similar Fourier sum- 
mation of the V~k, must be made to obtain the projected 
absorbing potential. 

(2) Propagation function 
Given the direction coordinates h",k", for the in- 

cident beam, calculate and plot the propagation 
phases, 

o~(h,k)=Az2{h(h-h z + k(k-k")}b 2 

in a two-dimensional array, a(h,k) reaches I at the first 
Laue circle. If the array reaches and includes this circle 
it is necessary to ensure that the first upper-layer inter- 
actions have been correctly included; similarly for 
higher layers; otherwise the calculation aperture must 
be reduced to obtain a zero-layer calculation. 

For small changes in orientation the projected poten- 
tial need not be recalculated, but the change must be 
introduced in the propagation function. The error in- 
troduced in not reprojecting the potential may be 
simply estimated. 

(3) Calculation of the phase-grating amplitudes 
There are two practical approaches to this calcula- 

tion. 
(a) Projected potential method: calculate the Fourier 

transform of 
exp {ia~o(x,y)Az) ; 

with phenomenological absorption this becomes the 
Fourier transform of 

exp {ia~o(x,y)Az) exp {-aa~o(x,y)Az) . 

(b) Direct structure-factor method: using very thin 
slices A'z(A 'z ~ Az) take 

q(h,k)=icrV(h,k,O)A'z [ 
q(0,0)= 1 J .  

(4) Multi-slice 
Calculate the repetitive convolution of equation (3). 

6. Applications 

There are now plenty of examples in the literature to 
provide illustrations of applications in practice, and 
guidance in choice of parameters. As examples we 
refer to Goodman & Lehmpfuhl (1967), (1968); Lynch 
(1971); Johnson (1968); Allpress, Hewat, Moodie & 
Sanders (1972); Lynch & O'Keefe (1972). In addition 
two further examples are included in order to show 
how particular features of the multi-slice method may 
be exploited. These examples are not intended to ex- 
plain either the MoO3 structure or the nature of in- 
elastic scattering, but simply to show the mechanics 
of the calculation which may be exploited in similar 
problems. 

(1) In diffraction from a parallel-plate crystal, the 
symmetry of the diffraction pattern is determined by 
the symmetry of a crystal of finite thickness. The sym- 
metry of the crystal may change with each additional 
atomic layer, and layers composing the unit cell may 
themselves belong to different symmetry classes. Be- 
cause of the very large phase change caused by passing 
through even one atomic layer, this produces an ex- 
perimentally observable effect. As an example we show 
in Fig. 1 calculations for MOO3, a six-layer structure 
with three layer types. For MOO3, a =  3.92, b = 13.94, 
c--3.66 A (orthorhombic), Pbnm, and planar group 
Cram in the (010) projection. Individual MoOz layers 
have the lower symmetry pm. Starting, and termina- 
tion, of the crystal by a particular layer type very 
strongly influences the intensity of the 100 and 001, 
(space-group forbidden for Cmm) reflexions, while the 
200, 002 reflexion intensities are mostly governed by 
the actual thickness (exhibiting Pendell6sung) for the 
(010) zone-axis calculation. There are two types of 
phenomena which are shown in the calculation, result- 
ing from dynamic diffraction from the three-dimensional 
structure. The large oscillation of 100 and 001 inten- 
sity with thickness is a projected-potential effect, i.e., 
the symmetry and (planar) unit-cell size of the pIojected 
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potential is an oscillating function of thickness. Kine- 
matically the effect would be small and become vanish- 
ingly small with increasing thickness, but with dynamic 
scattering from a phase object the effect remains signif- 
icant. This is the main reason foi the intensity oscilla- 
tions shown with ½ and 1 unit-cell periodicity, which 
continue to large thicknesses. On the other hand differ- 
ences in diffraction intensities obtained from two crys- 
tals containing the same number and identity of layers, 
but differing in layer sequence, or in identity of the 
starting (surface) layer, are due to propagation. As a 
consequence of this effect the 100 and 001 intensities 
are not the same after traversing equivalent numbers 
of whole unit cells, in the two crystals represented by 
Figs. 1 and 2. The intensities are more nearly zero in 
Fig. 2 because for this crystal the (½,½) shift in the 
structure cancelling out the kinematic structure fac- 
tors occurs after ~ 7 A as against ~ 14 A in the crystal 
corresponding to Fig. 1. 

The calculation also showed the very minor role 
played by absorption in thin crystals. When the calcula- 
tion was made to include absorbing atoms (assuming 
the absorption centres coincided with the atom centres) 
by taking a &-function absorption model with 0.4 and 
0.1 V for Mo and O respectively (giving for example 
V~02=2.8 V) no appreciable difference was detected 
in the thickness curves other than a general damping 
of the t o ta l  curve. 

At intermediate thicknesses absorption introduces 
intensity changes that are largely separable, but at 
greater thicknesses the absorption introduces its own 
dynamic effects which become increasingly difficult to 
separate out from the effects of phase scattering. 

(2) A second example illustrates an application to 
calculation of diffuse or inelastic scattering from points 
within the crystal. The use of multi-slice methods for 
inelastic calculations was first discussed by Gjonnes 
(1966), and calculations were given by Doyle (1969). 
Here we must calculate the scattering of the wave up 
to a point in the crystal, and the subsequent transmis- 
sion through the remainder of the crystal. However, 
in calculating by multi-slice for a given angle of in- 
cidence and storing all the information up to the exit 
face, we need only to reassemble this information to 
obtain the desired result. For a crystal of thickness H, 
and inelastic scattering from a depth x, we need the dif- 
fra6tion pattern at the depth x, and the subsequent 
transmission for the depth H - x ,  which is already cal- 
culated. We may reassemble this data over all x, either 
by summing over amplitudes, or intensities. Thus, 
provided we are content to compute a restricted num- 
ber of points in reciprocal space, usually points neigh- 
bouring the Bragg directions, the multi-slice method 
may be used economically. 

This economy is particularly valuable in calculation 
for convergent-beam patterns where the calculation 
must be repeated for a series of incident directions 
within the incident cone. It is also necessary, in the 
particular example described, to calculate the incident 

directions corresponding to the scattering directions of 
the main Bragg beams. However, further economy is 
usually possible due to the combination of the reci- 
procity theorem and the crystal symmetries, e.g.  in a 
systematic interaction calculation the number of in- 
cident angles calculated may be halved. 

In order to obtain the inelastic intensities, a calcula- 
tion is made both for elastic scattering and for inelastic 
scattering for a thickness H, for each incident angle. 
The latter calculation is made by including in the 
projected potential for the first slice a projected pseudo- 
potential corresponding to the inelastic process rep- 
resented, or, in the case of phonon scattering, actual 
atomic displacements may be incorporated into the 
projected structure. Subsequent slices are for the nor- 
mal structure. 

Hence subsequent convolutions of the calculation 
propagate separately the elastic, and inelastic beams, 
through to the exit face. The amplitude and intensity 
of each beam after each slice is stored. It is noted that 
the wavelength change may be easily incorporated, but 
is usually too small to contribute to the observed effects. 

The resulting inelastic intensity is calculated by re- 
assembly of the results, as (taking h' to define the 
scattering direction): 

li"(h')=lin(n,h')+ /in(n- 1 , h ~ - h ' ) l e ~ ( 1 , h l )  . . .  

+ I ~ n ( n -  r e , h 1 -  h ' ) .  l ~ ( m ,  hl)  . . .  

l t " (1 ,h l -h ' )  . I~l(n - l,hx) 

with the superscripts in and el for inelastic and elastic 
terms respectively. This gives the contributions from 
one direction, hi, to the direction h' or for the total 
conttibution; 

I ' ' ( h ' ) t o t a ,  = Itn(n, h') + I [u i " (  n - -  1,h~ -- h ' ) .  u ~ ' ( 1 ,  h~) 

+ u tn(n -- 1, hz - h ' )ue ' (1 ,  hz) + . . .  ]12 + . . . .  

X 0 -4 

20 

K 

0 I0 20 30 

Fig. 2. The corresponding intensity curves for MoO3 in the 
[010] orientation which start with a single octahedral  layer. 
The diffracted intensities are different, for all thicknesses, 
from those shown in Fig. 1. 
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where the summation over contributing beams hl,h2 
extends only over the strongest beams of the pattern, 
and not over all beams included in the dynamic cal- 
culation. 

For a more complete analysis, departure from the 
Bragg directions and coherence depth in the crystal 
should be taken as parameters in the calculation, as 
has been done by Doyle (1969). The principle of this 
method can also be applied to the economic calcula- 
tion of elastic scattering from moderately thick crys- 
tals. These problems will be described more completely 
elsewhere. 

It might be noted that the multi-slice method is ap- 
plicable to all problems requiring the N-beam scatter- 
ing amplitudes. As a further example we quote the cal- 
culation of fine-structure associated with diffraction 
from a wedge crystal. Although it is customary to use 
the eigenvalue method for this purpose, we have derived 
this fine structure by integration of the (complex) wave 
amplitude u(h,k,z) a function of thickness, over a cer- 
tain thickness range, i.e. 

I 
z = H  

A(h,k, w) = u(h,k,z) exp {2nizw}dz, 
o . , z=O 

which is the Fourier transformation of the amplitude 
u after multiplication with the appropriate step func- 
tion. In fact we expect this calculation to be more ef- 
ficient than the eigenvalue method for large numbers 
of beams. In this equation w is the fine-structure coor- 
dinate in reciprocal space, z is crystal thickness at points 
along the wedge, and A is the fine-structure amplitude 
for the reflexion hk. The value of H is chosen to suit 
the experiment. 

7. Relationship to other formulations 

There are, currently, five formulations describing N- 
beam scattering. All are equivalent, though for a speci- 
fic analytical problem one may prove more convenient 

than another. The connexions between formulations 
are readily traced, but some of the relationships throw 
a good deal of light on the efficiencies of the various 
numerical procedures, and will therefore be considered 
from this point of view. 

In order to clarify expressions the following nota- 
tion is adopted. Column vectors of arbitrary dimen- 
sionality are written in lower-case bold face, matrices 
in capital bold face, matrix elements as subscripted 
expressions enclosed in square brackets and a dagger is 
used to indicate Hermitian transpose. Thus u is a col- 
umn vector, M a matrix, and [exp r i m  T M  is the ijth ~Jl j  
element of the matrix function enclosed in the square 
brackets. 

An analytical solution is obtained by the multi-slice 
method on iterating equation (1), and taking the im- 
pulse limit. Equation (1), however, can be regarded as 
the finite difference form of some differential equation 
that can be derived by Feynman's (1948) method (Path 
2, Fig. 3). The number of slices in a crystal of thick- 
ness H is H/Az, so that, if an error of order (Az) 2 is 
made in each slice, the total error grows as (H/Az) (Az) 2 
= HAz, which goes to zero in the limit Az ~ O. Thus 
the calculation need be correct only to first order in 
Az. Writing the convolution in equation (3) explicitly 
and expanding ~ , ( x , -  xl ,y-yl) ,  

gt"+x=exp {ia~°"+l} I~_oo f~_~exp { ik(x~+ } 

× ~, -m! --x~ m=O ~X -Yl  

x ~,(x,y)dxldyl. 

This leads to integrals of the form, 

(p+q)! 3xP3y" .-oo -ooxfy~exp [ 2-Az J 

x dxldyl. 

SCATTERING M A T R I X  MULTI-SLICE GREEN'S FUNCTION 

FUJI WARA 
COWLEY AND MOODIE 

BETHE STURKEY 

'" ', l ' " ,  / r , , ,  
WH , N .I. 'STU,  Y / I ", 

'r / =  ""H"S ""D / / 0 1  
> .MffR,XS,.O.L.U.~ON] .. AN.ALYT_~CA_LSOLUT,ON i 

FUJIMOTO U = n ~ E n Z n  u = e x p(i MH).ao~FU01~ZW O 

+ + 

1 < 

EIGENVALUE SEMI-RECIPROCAL 

TOURNARIE 

\\ 
IOHNSON 

Fig. 3. The relationship between the five principal N-beam formulations. Headings give the principal methods. Boxes show the 
solutions. Full lines are theoretical treatments; broken lines show numerical applications. 
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The only non-zero integrals of apptopriately low order 
in Az are, 

• ~ ik(x~ + y~) 2~iAz 
I~ f :  exp[  2-~ - } d x l d y l -  k 

and, 

2, I_~ __ [x~exp{ 2-A-z- JOx 2 

f + y2 l 
exp ]. 2-a-~ j }yZ-] dxldyt 

= (i~___zz)(_~z) [c~2~ c32~] 

Substituting these values in equation (6), taking, to 
sufficient accuracy, exp {ia~o. +lAz} = (1 + ia~o. + 1Az) 
and expanding ~.+1 as, 

~u.+l = ~ ( x , y , z + A z )  ~ ~u(x,y) + ~-z A z ,  

Üv,u 2zciAz (1 + iaq~Az) ~'+ ~d- Az,~ g--  

izlz (a~, ~,~ 
x [ ~ ' + - U  ,~-~ + ~211 • 

Normalizing and equating coefficients gives, 

0~u 2ka~0~,- ( 02~' O'+~, 
i2k Oz - \-O-J + ~ 2 1 ,  

which is Schr6dinger's equation with no back scat- 
tering. Fourier transforming this equation with respect 
to x and y gives Tournarie's semi-reciprocal equation 
for no back scattering, 

d u  

dz - i M ( z ) u ,  (7) 

with u the column vector of the scattering amplitudes 
and M the matrix with components, 

M = K  +½K-W(z) ,  [K]u=OuK~, 

[V]u=2ka ~: Vi_j exp {2z~ilz}. 
e 

Ki is the z component of momentum of a beam scat- 
tered in the direction i. Equation (7) can be obtained 
directly by applying Feynman's method to equation (2), 
that is, equation (2) can be regarded as a finite differ- 
ence form of equation (7). Broadly, numerical methods 
based on equation (7) will involve either a direct attack 
on the set of coupled differential equations, or a trans- 
formation of the set into finite difference form, equa- 
tion (2) being one such form. In fact it is a very efficient 
form since the set is fundamentally oscillatory and 
presents classic difficulties to standard relaxation tech- 
niques. Johnson (1968) has described methods for the 
direct solution of equation (4) on an analogue com- 

puter. The principal advantage of this method is its 
speed, which is sufficient to allow the continuous dis- 
play of scattering amplitudes, or intensities as a func- 
tion of thickness, or angle of incidence, while param- 
eters in the computation are varied. For any but the 
largest computers, however, the number of beams that 
can be included is limited to 10 or 15. Nevertheless the 
method has been found to be powerful (Goodman, 
1971; Lynch, 1971), particularly when used in the sur- 
vey of parameters for more extensive digital computa- 
tions, and in utilizing effective potentials determined 
by digital computation (Goodman, 1974). 

If M is taken to be independent of z, that is, if upper 
layer-line interactions are neglected, the solution to 
equation (7) can be written down immediately as, 

u=exp  {iMH}ao, (8) 

where H is the crystal thickness and 

Equation (8) is Sturkey's (1962) solution. 
Direct computation of the matrix series for u is im- 

practicable because of slow convergence. Sturkey 
solves this problem by using the relation 

e x p { i M H } = [ e x p { i M H } ] " = [ e x p { i M A z } ]  ". 

n is chosen sufficiently large that exp {iMAz} converges 
in a few terms, and direct matrix multiplication gen- 
erates the result for the required thickness. It is a dis- 
advantage of this method that all terms in the scatter- 
ing matrix must be evaluated by a full-matrix multipli- 
cation. With some rearrangement this disadvantage 
can be overcome at the expense of iterating at equal 
intervals over the complete range of thickness: in fact, 
multi-slicing with unit-cell increments in thickness. 
This can be seen (Path 3, Fig. 3) by making use of a 
theorem due to Zassenhaus and quoted by Magnus 
(1954), which states that if A and B are square ma- 
trices of the same dimension, 

exp {A + B}= rI exp {G,}, 
P 

where the Gp are elements of a Lie algebra; and that 
the product series is convergent. The Gp, which in- 
crease rapidly in complexity, can be determined by 
iteration, the first three being, A , B , - ½ { A B - B A } =  
- ½[A, B]. Writing K = K0 + 27~Z, so that 

[K]u = k -I- 2zc¢,, [ K ] i j = 0  , 
and putting 

[K V ] u = [ V ] u } [ B ] u = 0  / [A]u= -1 
[A]u = 0 [B]u = k + 2zr~i , 

then 
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exp {iMAz}~exp {iKoAz} exp {i2rcZAz} 

i [KAz, V'Az] } , xexp {iV'Az} exp - ~- . . .  

Az being chosen, in the first instance, sufficiently small 
to ensure convergence. Since the commutators are 
necessarily smaller than the constituent elements it 
will be possible to choose Az such that 

exp {iMAz}~_exp {iKoAz} exp {iZrcZAz} 
x exp {iV'Az}. 

Hence, 

exp {iMz}a0=exp {iMnAz}ao=[exp {iMAz}]nao 
=[exp {iKoAz} exp {i2rcZAz} 

x exp {iV'Az}]"ao . . . .  (9) 

In the analytical solution, i.e. for an infinite matrix, 
the elements of the matrix, exp {iV'Az}, are precisely 
those of the phase-grating approximation so that the 
repeated multiplications of equation (9) are precisely 
the iterations of the multi-slice method. This situa- 
tion is often approached in current numerical work. 

However, when an approximate calculation is re- 
quired, i.e. when the number of beams is deliberately 
restricted, the two methods will only give identical 
results when the order and contents of the matrix, and 
the length of the multi-slice sequence, are made com- 
patible. This situation arises because the number of 
coupling terms in the calculation is not necessarily the 
same, and is generally greater than, the number of 
beams computed. 

In calculation for a thick crystal it is possible to 
drop a number of terms from the calculation after a 
certain stage and still maintain a consistent accuracy, 
because the intensities in the outer beams are reduced 
by propagation. 

A point of detail arises in the element of the matrix 
M, given by, 

1 O" 

2Kt 2kaVi_j- cos 0i VI-j ,  

where 0i is the angle through which the beam is scat- 
tered. In the previous sections cos 0i has been approxi- 
mated as unity, since even the most accurate measure- 
ments are so far in error by much more than this 
amount. In terms of multi-slicing the factor arises from 
the increasing path length, and hence phase change, 
with increasing scattering angle. 

Sturkey (1962) was the first to point out a rapid 
method of calculation for a given thickness, involving 
raising the matrix to the nth power (equation 2.11 of 
the above reference)• In order to use the multi-slice 
method in an equivalent way, careful attention must 
be given to those details discussed in connexion with 
equation (9). In many applications however, intensities 
or amplitudes are required over a certain range as an 
almost continuous function of thickness• Because of 
this, and the points discussed above, Sturkey's method 
is not usually advantageous numerically compared 

with the multi-slice method, but his formulation" is 
particularly powerful analytically (e.g. Anstis, Lynch, 
Moodie & O'Keefe, 1973; Lynch & Moodie, 1972). 

Upper-layer-line effects can be accurately incor- 
porated into the multi-slice method by making Az suf- 
ficiently small. This suggests that Sturkey's solution 
can be generalized to include upper-layer-line effects, 
and this, in fact can be done (and has been, in effect, 
by Sturkey, 1962), although the solution can no longer 
be written in a form as simple as equation (8). 

The relationship with Bethe's eigenvalue technique 
(Path 1, Fig. 3) can be obtained by making the change 
of variable u=Ty in equation (8). Then, 

du dy 
dz - T d z - '  Ty(O)--ao, 

dy 
dz -- iT-1MTy. 

Suppose T is such that 

21 1 
T-1MT = 2p 

i.e. the 2t are the eigenvalues of M, then 

y= 
l exp i21z 1 

• ° 

exp i2pz 
T-lao, 

u = T  

l exp i2~z 
• . 

exp i2pz 
I T-Xao, 

giving Fujimoto's (1959) expression, 

[u]h= ~ [Pt~Pth exp {i2,z}l, 
P 

where the Pth are the components of the eigenvectors. 
From this point of view the eigenvalue formulation 
uncouples the set of differential equations and gives 
the solution in terms of the eigenvalues. Apart from 
the difficulties inherent in deriving accurate eigenvalues 
for an oscillatory solution derived from many normal 
modes, the computer memory required increases as the 
square of the number of beams. Again, this results 
from working with the full N x N matrix, when, ul- 
timately only a column of numbers is required• 

A C 3 0 A  - 1 1  
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'Thus, in the three main computational~methods; the 
scattering matrix, the eigenvalue, and the multi-slice, 
the first two require a computer memory porportional 
to N z, and the latter, as is shown in § 2, only to N. 
Ultimately the reason for this is that the multislice 
numerical method incorporates the boundary condi- 
tions from the outset. 
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(Recu le 9 octobre 1973, acceptd le 16 novembre 1973) 

A simple method of calculating the mean-square displacement (u 2) of the different atoms in III-V 
compounds is given. The method is applied to GaP and the results are compared with experimental 
values determined by X-ray diffraction. 2500 reflexions were measured at room temperature with an 

automatic diffractometer. The values of (U2) 1/2 deduced from experiment, i.e. 0.067_+ 0.001 A for Ga 
and 0.077_ 0.002/~t for P, are in agreement with the computed values. 

Les amplitudes quadratiques moyennes (u 2) des vibra- stock, 1970; Rosov & Sirota, 1967) en analysant les 
tions des atomes du cristal de GaP ont 6t6 mesur6es par intensit6s de rayons X diffus6s par une poudre de ce 

/ , , 2 \ 1 / 2  = 0,074 A, deux 6quipes diff6ren~tes (Liang, Guenzer & Bienen- compos6. La premiere 6quipe trouva \ . /Ga 


